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Preferred equilibrium structures of a smectic-A phase grown from an isotropic phase:
Origin of focal conic domains
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Preferred equilibrium structures of a smectic-A phase grown from an isotropic phase have been
investigated theoretically and experimentally. The surface-integral equation reported in our recent
paper [H. Naito, M. Okuda, and Z. Ou-Yang, Phys. Rev. Lett. 70, 2912 (1993)] and a surface-
differential equation are derived from the Euler-Lagrange equations for the variation of the nucleation
energy of the smectic-A phase. Toroidal structures of the smectic-A phase are shown to be solutions
of both equations and are observed experimentally in binary mixtures of octyloxycyanobiphenyl
with dodecyl alcohol. It is also shown that focal conic domains are developed from such structures.

PACS number(s): 61.30.Cz, 02.40.Hw, 46.30.—i, 82.65.—1

Focal conic domains (FCD’s) in a smectic-A liquid
crystal (Sm-A LC) have been extensively studied ever
since the discovery of FCD’s by Friedel and Grandjean
in 1910 [1]. FCD’s are certainly represented in terms of
a family of Dupin cyclides [2—-4] where the Sm-A layers
preserve the interlayer spacing. However, as Bragg has
questioned [3], why the cyclides are preferred to other
geometrical structures under the preservation of the in-
terlayer spacing is still open. Kleman has evaluated the
energy of an isolated FCD on the basis of a pure elas-
tic energy theory [5] and concluded that the eccentric-
ity of the elliptic disclination line in the FCD is one at
the minimum of the energy [6]. However, Nakagawa [7]
has pointed out that this conclusion contradicts the ex-
perimental results, which are that certain values of the
eccentricity have been observed [3,4]. The theoretical
approach to the FCD problem in Ref. [7] was that the
uniaxial Sm-A theory was changed to the so-called bi-
axial Sm-A theory but still within the framework of the
elastic energy theory. On the other hand, Bragg has sug-
gested the importance of the thermodynamic generation
of the geological structures such as contortions of strata
in the Sm-A phase. FCD’s are undoubtedly thermally
generated; FCD’s are formed by cooling a LC from the
isotropic (I) or nematic (V) phase to the Sm-A phase
[3,4]. Thus, efforts have been made to understand the
development of FCD’s [8,9] by means of nucleation and
growth theories [10]. In these studies, however, the pref-
erence for FCD’s (or Dupin cyclides) has not been dis-
cussed theoretically from the energetic point of view. For
this reason, we stress that Bragg’s question mentioned
above is still open.

Recently, we have investigated the equilibrium shapes
of a Sm-A phase grown from an I phase [11]; we have
derived the integral equation that describes the equilib-
rium condition of the Sm-A—TI interface, and have success-
fully explained the equilibrium cylinder structures with
or without beaded configurations observed in the growth
of the Sm-A phase [12]. Unfortunately, the integral equa-
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tion in Ref. [11] gives only the necessary condition of the
equilibrium structures of the Sm-A phase and does not
predict the shapes of the preferred structures.

In this paper, we derive the general shape equation
of the Sm-A phase in an I phase for the prediction of
the preferred equilibrium shapes and confirm the theo-
retical prediction experimentally in the binary mixture
of octyloxycyanobiphenyl (80CB) with dodecyl alcohol
(DODA). We find that the toroidal structures of the Sm-
A nucleus are equilibrium shapes and show that FCD’s
are developed from such structures.

The Sm-A nucleus grown from an I phase can be de-
scribed as a layer whose inner and outer surfaces are par-
allel surfaces [13]; the inner and outer surfaces are rep-
resented by ?(u, v) and Y(u,v) + Di(u,v), respectively,
where v and v are parametric coordinates of the surface,
D is the thickness of the layer, and 7i(u,v) is the unit
outward normal vector of both surfaces. As described in
our previous paper [11], the net difference in the energy
between the Sm-A and the I phase is the sum of the
three terms: (1) the volume free energy change due to
the I-Sm-A transition [11]

Fy = —gV = —go }{(D — D?*H + 1D?K)dA, (1)

where go(> 0) is the difference in the Gibbs free energy
density between Sm-A and I phases, V is the volume of
the Sm-A phase, and H and K are the mean and Gaus-
sian curvatures of the inner surface, respectively, (2) the
surface energy of the inner and outer Sm-A-I interfaces
(13]

Fa=~ j{[l + (1 - 2DH + D*K)]dA, )
where ¢ is equal to +1 or —1 according as 1—2DH +D?K
is positive or negative [11], and (3) the curvature elastic

energy of the Sm-A nucleus [14]

2095 ©1995 The American Physical Society



2096

ki1 1-DH+ DvVH? - K
F.=— ¢2¢/H?-K1 dA
2 n<1—DH—D\/H2—K

+(2his +k9)D § Kda, 3)

where k1, is the splay elastic constant of the Sm-A, and
ks is defined as 2ky3 — ka2 — k24, k;j are the Oseen-Frank
elastic constants. All the surface integrals are carried
out over the inner surface ?(u,v). Then, the total free
energy of the Sm-A layer in the I phase is

F=Fy+Fao+F.= ]{1,/;(}1, K,D)dA, (4)

where 9 (H,K,D) is the sum of the integrands of
Egs. (1)-(3). Thus, the preferred equilibrium structures
of the Sm-A nucleus are obtained from the solutions of
the variation problem, §F = 0.

Since the nucleation energy is a function of ¥ (u, v) and
D, we can derive the two Euler-Lagrange (EL) equations
from the variation of F' with respect to D and ?(u,v).
The first EL equation is

f(2k11[—{2 + k5K — do — 27H)dA = 0, (5)
obtained from the straightforward calculation, 0F /8D =

§¥pdA =0, where ¥p = 8% /0D, H = (H— DK)/(1—
J

ki (VZH — V?)
2

1 In 1-DH+ DvH? - K
H? - K 1-DH-D+VH? - K

+k11

It is evident that spheres and cylinders [11,12] are al-
ways the solutions of Eq. (7) when their H and K satisfy

2
kyy 22U S2QHEDI) _ (2H — KD)(2v — goD) = 0. We
show that the equilibrium condition of the inner surface,
§(2k11H? + ksK — go + 2yH)dA = 0, in Ref. [11] can
be derived from Egs. (5) and (7). These findings indicate
that our previous results are consistent with the present
analysis.

Our next interest is in formation processes of FCD’s;
we believe that FCD’s are developed from one of the so-
lutions of Eq. (7). At the early stage of the growth of
the Sm-A nucleus, D increases from zero to 2v/go with
decreasing temperature at an optimum cooling rate. In-
deed, there exist such optimum cooling rates from the
N or I phase to observe FCD’s [9]. It is, therefore,
reasonable to write D = 2v/go at a constant temper-
ature in the Sm-A phase (D is temperature dependent
because of gg =~ AfﬁT:';“;m [9], where AH is the transfor-
mation enthalpy, 7. is the transition temperature, and
Up, is the molar volume of the LC). D is expected to be
much smaller than the geometrical size of the nucleus and
thereby Eq. (7) can be linearized with respect to D. The
linearized equation is

) +2D [V?*(H — DK) — V?*(1 — DH)]

2D(H? — K)(2H — DK)

BRIEF REPORTS 52

2HD + D?K), K = K/(1 — 2HD + D?K), and dA =
€(1 — 2HD + D?K)dA. Note that Eq. (5) is identi-
cal to the equilibrium condition of the outer surface,
?(u,v) + Dii(u,v) [13], which has been reported in our
recent paper [11].

The second EL equation is calculated from
OF /5}7(11,,'0) = 0 and is the general shape equation of
the Sm-A nucleus [15],

(2H? —= K + iV?)yy + (2HK + V)¢ — 2Hy = 0,

(6)

where g = ¢ /OH, vk = O /0K, V2 is the Laplace-
Beltrami operator defined as (1/,/9)8;(g%\/g9;), V? is
a new operator that we define as (1/,/9)8;(K L% ,/gd;),
81 = aua 02 = ava g = det’(gz,‘l)a LY = (Lij)_la and 9ij
and L;; are associated with the first and second funda-
mental forms of the surface, respectively. Equation (6) is
identical to the equilibrium condition of bilayer vesicles
derived in Ref. [16] for ¥ = 0. This condition is a sim-
ple extension of the shape equation of bilayer vesicles at
mechanical equilibrium [17], but Eq. (6) is a more general
expression and hence the derivation of Eq. (6) requires
more laborious calculation [15]. As an example of the
generality, we show that Eq. (6) is also identical to the
Gauss-Bonnet theorem, § § K dA = 0, for ¢ = K.
Substituting v into Eq. (6), we have

1
1—2DH+D2K}

1 2pH+ Dk~ (2H —KD)(2y - goD) = 0. (7)

V2H +2H(H? - K) = 0. (8)

This equation is a well-known surface equation and is sat-
isfied by minimal surfaces and spheres [16]. We should
note that a Clifford torus expressed as Y (u,v) = ((v/2 +
cosv) cosu, (V2 + cosv)sinu,sinv) (0 < u,v < 27)
and its conformal transformation [18] are the solution
of Eq. (8) as well. Such toroidal nuclei can be regarded
as seeds of FCD’s as illustrated in Ref. [19] because it
has been shown that a spherical Sm-A nucleus is un-
stable [11,12]. The conformal invariability of Eq. (8)
provides an explanation for the key characteristics of
FCD’s, which the size of FCD’s is distributed even in
the same sample [1-3] and which FCD’s are described
by Dupin cyclides. We consider the following two pos-
sible reasons why toroidal structures are preferred: @)
a Gaussian-curvature elastic modulus ks is positive (this
means that the Gaussian-curvature elastic energy of the
toroidal structures is lower than that of spherical struc-
tures) [18] and (ii) genus-1 surfaces like a Clifford torus
and its conformal transformation are at the absolute min-
imum of the curvature energy, _f H?dA, known as the
Willmore conjecture [20] [2212 §(2H)2dA is the approx-
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imated form of Eq. (3) in case where k5D ¢ KdA is ne-
glected and D <« (the size of the Sm-A nuclei)].

We demonstrate this prediction concerning the origin
of FCD’s experimentally. The LC material used here was
the binary mixture of 8O0CB and DODA whose phase di-
agram has been reported by Pratibha and Madhusudana
[12]. In this system, the N phase is suppressed for a mo-
lar concentration (> 20%) of DODA and the I and Sm-A4
phases coexist in a fairly wide temperature range. The
LC cells of dimensions 10 x 10 mm? and of thickness 50
pm bounded by glass plates were prepared. The sam-
ple temperature was controlled in a hot stage (Mettler
FP82HT) with a processor (Mettler FP90). The growth
processes and the equilibrium shapes were observed with
a polarizing microscope (Nikon) equipped with a video
camera (Sony DXC-151A). The images were recorded and
fed into an image processor (Shimadzu Nexus600).

The cells with 40% of 80CB were cooled from the I
phase at —0.1 °C/min and the cooling was stopped at a
temperature in the coexisting region for the observation
of equilibrium Sm-A shapes. The Sm-A appears initially
in the form of a number of spherical droplets that grow in
size and then start elongating into a cylindrical structure.
The cylinders rapidly grow and become long and entan-
gled threads [12]. The threads suddenly collapse forming
compact domains at the LC-glass interfaces (Fig. 1). Fig-
ure 2 shows a representative domain observed with the
analyzer and polarizer crossed (a) and with the polar-
izer only (b). We can see that the domain has a toroidal
structure as predicted theoretically.

In order to confirm our observation further, we simu-
lated polarizing-microscope images of the toroidal struc-
tures by means of a method described in Ref. [21]. The
cross sectional area of the toroidal structure in this sim-
ulation is schematically illustrated in the inset of Fig. 3,
where R and r are the radii of the two generating circles
of the inner toroidal surface of the Sm-A nucleus and
have been demonstrated to have the relation R/r = /2
(18], and D [= 2(R + 7 + D)] and d [= 2a = 2(r + D)]
represent the outer diameter and the width of the ring of
the outer toroidal surface, respectively. The transmitted
light intensity Iz through the polarizer, the L.C slab, and

FIG. 1. Equilibrium shapes of Sm-A domains grown from
the I phase at 40 °C in the mixture of 80OCB and DODA
observed under crossed polarizers (the molar concentration of
8OCB is 40%). The picture is about 385 pm wide.
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(a) (b)

FIG. 2. Equilibrium shape of a toroidal structure observed

with the analyzer and polarizer crossed (a) and with the po-

larizer only (b). The picture is about 70 pm wide. Simulated

texture for a toroidal structure under crossed polarizers (c).
The width of the ring of the simulated structure is 20 pm.

finally the analyzer is calculated to be [15]
Ir = cos® usin®(u)|| — 1

+expli2m{ne(v) — no}e(v)/Ao]l?, (9)
where 0 < u < 27 and 0 < v < 7, n.(v) = none/
\/ng cos?2v +nZsin®v, £(v) = {/z2— (z —1)2cos?v

— (z — 1)sinv}D, z = vV2/{1 + V2 - (D/d)}, D = d/
(2z), Ao is the wavelength of the incoming light, and n.
and ng are the principal refractive indices for extraor-
dinary and ordinary ray, respectively. In this calcula-
tion, we use values of ng = 1.5 and n. = 1.7 typical of
cyanobiphenyl liquid crystals, and ignore diffraction ef-
fects and the tilt of the LC molecules [21]. Figure 2(c)
shows the simulated texture for d = 20 ym. We can see
that there is a good resemblance between the observed
texture and the computer generated texture, especially
in the concentric patterns near the outer and inner edges
of the toroidal structure. ~
It is expected that the range of the values of D/d is

2<D/d<1+V2. (10)
40 T T T T T T T T T T
I Z
- //_\\ ms ! a=D/2 m
E d R rD j
Soof P R
ke + x J
d=D/(1+2"?)
0 L 1 N 1 1 N { 2 1
0 20 _ 40
D (um)

FIG. 3. A plot of the outer diameter D vs the width of the
ring, d of the equilibrium toroidal structures observed at 40 °C
in the mixture of 80CB and DODA. The molar concentration
of 8OCB is 40%. Two solid lines represent d = D/2 and
d = D/(1 +2/?). The inset shows the schematic illustration
of the cross sectional area of the toroidal structure. The z
axis is the axis of rotational symmetry.
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We measured D/d values for various toroidal structures
and indeed find that the values are in the range of
Eq. (10) as shown in Fig. 3. In this figure, we show
the toroidal structures with D less than the cell thick-
ness, because the equilibrium structures of Sm-A nuclei
change as shown in Fig. 1 when D reaches a critical value
close to the cell thickness. The size of the Sm-A4 nucleus
is determined by ~, go, and k1;. Since a = D, we obtain

Vz? — 4z + 2(82% — 42) = q(z — 1) (11)

from Eq. (5) [15], where ¢ = v/2k;1g0/7? is a dimen-
sionless quantity. Using ki; = 107 dyn [5], v = 102
dyn/cm [9,11], and go ~ 10*(T, — T) ergs cm™3 [9], we
have ¢ = 0 ~ 10% and thereby z = 2 + /2 ~ 10 [15].
This corresponds well to the relation in Eq. (10). Fur-
thermore, the value of D (= 2v/go) is in the order of ym.
These results are consistent with the observation shown
in Figs. 1-3.

Finally, we mention that FCD’s are not always gen-
erated from axisymmetric toroidal nuclei as is evident
from the conformal invariability of Eq. (8). For non-
axisymmetric toroidal structures of the Sm-A nucleus
such as Dupin cyclides, the geometrical restriction,
Eq. (11), derived from Eq. (5) becomes very complex
(all kinds of elliptic integrals are involved) but can de-
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termine the eccentricity of the elliptic disclination line in
the FCD’s [15].

In summary, we have derived the two shape equations
for Sm-A nuclei grown from the I phase by the varia-
tion of the Sm-A nucleation energy with respect to D
and Y('u,,'v); one is Eq. (5), which is identical to the
surface-integral equation in Ref. [11] and the other is
Eq. (6). A toroidal structure is shown to be a solution
of these shape equations and are observed in the binary
mixture of 80CB and DODA. The thermal generation of
the toroidal structure is controlled by the difference in
the Gibbs free energy between the Sm-A and I phases,
the curvature elastic energy of the Sm-A nucleus and
the interface energy, and plays a key role of the forma-
tion of FCD’s because of the conformal invariability of
Eq. (8). We stress that the shape equation, Eq. (6) has
significance in the nucleation and growth theory for other
complex fluids or soft matters.
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FIG. 1. Equilibrium shapes of Sm-A domains grown from
the I phase at 40°C in the mixture of 80CB and DODA
observed under crossed polarizers (the molar concentration of
80CB is 40%). The picture is about 385 um wide.
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FIG. 2. Equilibrium shape of a toroidal structure observed
with the analyzer and polarizer crossed (a) and with the po-
larizer only (b). The picture is about 70 um wide. Simulated
texture for a toroidal structure under crossed polarizers (c).
The width of the ring of the simulated structure is 20 gm.



